THE NMR AND CONFIGURATION OF GLYOXAL OSAZONES by Jonathan M. Kliegman and Robert K. Barnes

Research and Development Department, Union Carbide Corporation Chemicals and Plastics, South Charleston, West Virginia, 25303, USA

(Received in USA 10 March 1970; received in UK for publication 13 April 1970)

<u>In</u> our recent report we established that the configuration of conjugated 1,2diimines of glyoxal was $\underline{\text{E}}-\underline{\text{E}}^1$. This was accomplished by analysis of their NMR spectra and by titration with 0.1 N HClO₄ in acetic acid. In the former case the appearance of the aldimine proton as a single resonance line precluded a mixture of isomers, i.e. $\underline{\text{E}}-\underline{\text{Z}}$, while in the latter, the uptake of 1 mole of HClO₄ per mole of diimine to give a planar, highly-stabilized, fivemembered ring containing the diimine linkage and an additional proton

was only allowed sterically if the conformations around the C=N bonds were $\underline{E}-\underline{E}$.

In a recent paper, Chapman, et al, concluded that the most sterically stable form of osazones is $\underline{E} - \underline{E}^{2a}$. Furthermore from analysis of its NMR spectrum they concluded that glyoxal bisphenylhydrazone exists in a non-chelating^{2b}, $\underline{E} - \underline{E}$ configuration. In this communication we confirm this conclusion and offer chemical evidence for its validity.

chelating

1859

The glyoxal osazones prepared for this study³ are given in the table along with the position (in ppm from TMS) in the NMR of their aldiimine resonances, and the result of their titration with 0.1 N HCl0₄ in acetic acid (as nitrogen equivalents per mole)⁴.

Compound	N = CH	Nitrogen eq/mole
(Me ₂ NN=CH) ₂	7.30(s)	0.98
(C ₆ H ₅ NHN-CH) ₂	7.68(s)	1.00
$(p-0_2 NC_6 H_4 NHN=CH)_2$	8.04(s)	1.08
$(C_6H_5)_2NN=CH_2$	7.1-7.4 (under arom.)	0.79
(H ₂ NN≓CH) 2	7.57(s)	1.04

The position of the resonance line in the NMR spectrum for the aldimine protons in these compounds coincides with that observed for mono-hydrazones $(7-8 \text{ ppm})^5$. The fact that they appear as singlets is evidence that only one isomer, either $\underline{Z-Z}$ or $\underline{E-E}$, is present⁶. Similar to the case of conjugated dimines¹, the uptake of only one proton per osazone linkage is explained by the formation of the following ring system:

This structure is only possible if the configuration about the imine groups is <u>E</u>- because rotation of the <u>Z</u>-configuration around the central carbon-carbon bond would be severely restricted by the substituted amino groups.

We therefore conclude from the above that these glyoxal osazones do indeed exist in a non-chelating (when R=H), <u>E-E</u> configuration

Further studies are presently underway to elucidate the conformation about the central carbon-carbon bond by dipole moment measurement.

- J. M. Kliegman and R. K. Barnes, <u>Tetrahedron Letters</u>, No. 24, 1953 (1969); Tetrahedron, in press.
- (2a) O. L. Chapman, R. W. King, W. J. Welstead, Jr., and T. J. Murphy, <u>J. Am.</u> <u>Chem. Soc.</u>, <u>86</u>, 4968 (1964).
- (2b) cf Ref. 2a in which chelating refers to internal hydrogen bonding.
- (3) All compounds prepared are known compounds and had the proper Melting and boiling points.
- (4) Titration of Schiff bases with 0.1 N HCl0₄ in acetic acid represents one of the strongest systems for total basicity, see for example, S. K. Freeman, <u>Anal. Chem.</u>, <u>25</u>, (11), 1750 (1953).
- (5) G. J. Karabatsos and C. E. Osborne, <u>Tetrahedron</u>, <u>24</u>, 3361 (1968); G. J. Karabatsos and R. A. Taller, <u>ibid</u>, <u>24</u>, 3557 (1968); and references therein.
- (6) If the <u>Z-E</u> were present, the aldimine protons would be magnetically nonequivalent and one would expect to see a pattern indicative of an AB pair.